

A155047


a(1) = 1, a(2) = 2, then a(n) = largest prime factor of the partial sum up to a(n1).


1



1, 2, 3, 3, 3, 3, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 17, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 41
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000


MAPLE

A006530 := proc(n) max(op(numtheory[factorset](n))) ; end:
A155047 := proc(n) option remember; if n <=2 then n; else A006530( add(procname(i), i=1..n1)) ; fi; end:
seq(A155047(n), n=1..120) ; # R. J. Mathar, Oct 23 2009


MATHEMATICA

nxt[{t_, a_}]:=Module[{lpf=FactorInteger[t][[1, 1]]}, {t+lpf, lpf}]; Join[ {1}, NestList[ nxt, {3, 2}, 80][[All, 2]]] (* Harvey P. Dale, Aug 06 2018 *)


CROSSREFS

Sequence in context: A056206 A257245 A329245 * A029088 A253591 A129263
Adjacent sequences: A155044 A155045 A155046 * A155048 A155049 A155050


KEYWORD

easy,nonn


AUTHOR

Giovanni Teofilatto, Jan 19 2009


EXTENSIONS

Extended by R. J. Mathar, Oct 23 2009


STATUS

approved



