%I
%S 606,1572,4120,10834,28500,74886,196346,515066,1352304,3552428,
%T 9333678,24522392,64420184,169229954,444582618,1168011448,3068677974,
%U 8062255694,21181628238,55649517844,146205759750,384121780036,1009193088634
%N Number of length n+5 0..2 arrays with no six consecutive terms having five times any element equal to the sum of the remaining five
%C Column 2 of A249530
%H R. H. Hardin, <a href="/A249524/b249524.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A249524/a249524.txt">Empirical recurrence of order 92</a>
%F Empirical recurrence of order 92 (see link above)
%e Some solutions for n=6
%e ..0....2....2....2....2....0....1....0....2....0....1....2....1....2....1....0
%e ..2....0....1....1....2....2....1....0....0....1....2....1....0....0....0....1
%e ..0....0....0....1....1....0....0....2....1....1....1....1....0....1....0....2
%e ..2....2....2....2....0....1....2....0....2....1....0....1....2....2....1....0
%e ..0....0....1....1....0....1....1....2....0....0....0....0....2....1....2....1
%e ..1....2....2....2....0....0....0....2....0....0....0....0....0....1....1....1
%e ..0....2....1....1....1....0....0....0....2....1....2....1....0....0....1....0
%e ..2....2....2....1....1....1....2....0....2....0....0....0....2....0....2....0
%e ..2....1....1....2....2....0....0....2....2....1....0....2....0....0....2....2
%e ..2....1....0....0....0....2....2....1....2....0....2....2....2....2....2....0
%e ..2....1....1....2....1....0....1....2....0....2....1....2....0....2....2....0
%K nonn
%O 1,1
%A _R. H. Hardin_, Oct 31 2014
